Test Uniform, Default and He Initialization on MNIST Dataset with Relu Activation
Objective for this Notebook 1. Learn how to Define Several Neural Network, Criterion function, Optimizer.
2. Test Uniform, Default and He Initialization
1. Learn how to Define Several Neural Network, Criterion function, Optimizer.
2. Test Uniform, Default and He Initialization
Table of Contents
In this lab, you will test the Uniform Initialization, Default Initialization and He Initialization on the MNIST dataset with Relu Activation
- Neural Network Module and Training Function
- Make Some Data
- Define Several Neural Network, Criterion function, Optimizer
- Test Uniform, Default and He Initialization
- Analyze Results
Estimated Time Needed: 25 min
Preparation
We'll need the following libraries:
# Import the libraries we need to use in this lab
# Using the following line code to install the torchvision library
# !mamba install -y torchvision
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import torch.nn.functional as F
import matplotlib.pylab as plt
import numpy as np
torch.manual_seed(0)
Neural Network Module and Training Function
Define the neural network module or class with He Initialization
# Define the class for neural network model with He Initialization
class Net_He(nn.Module):
# Constructor
def __init__(self, Layers):
super(Net_He, self).__init__()
self.hidden = nn.ModuleList()
for input_size, output_size in zip(Layers, Layers[1:]):
linear = nn.Linear(input_size, output_size)
torch.nn.init.kaiming_uniform_(linear.weight, nonlinearity='relu')
self.hidden.append(linear)
# Prediction
def forward(self, x):
L = len(self.hidden)
for (l, linear_transform) in zip(range(L), self.hidden):
if l < L - 1:
x = F.relu(linear_transform(x))
else:
x = linear_transform(x)
return x
Define the class or neural network with Uniform Initialization
# Define the class for neural network model with Uniform Initialization
class Net_Uniform(nn.Module):
# Constructor
def __init__(self, Layers):
super(Net_Uniform, self).__init__()
self.hidden = nn.ModuleList()
for input_size, output_size in zip(Layers, Layers[1:]):
linear = nn.Linear(input_size,output_size)
linear.weight.data.uniform_(0, 1)
self.hidden.append(linear)
# Prediction
def forward(self, x):
L = len(self.hidden)
for (l, linear_transform) in zip(range(L), self.hidden):
if l < L - 1:
x = F.relu(linear_transform(x))
else:
x = linear_transform(x)
return x
Class or Neural Network with PyTorch Default Initialization
# Define the class for neural network model with PyTorch Default Initialization
class Net(nn.Module):
# Constructor
def __init__(self, Layers):
super(Net, self).__init__()
self.hidden = nn.ModuleList()
for input_size, output_size in zip(Layers, Layers[1:]):
linear = nn.Linear(input_size, output_size)
self.hidden.append(linear)
def forward(self, x):
L=len(self.hidden)
for (l, linear_transform) in zip(range(L), self.hidden):
if l < L - 1:
x = F.relu(linear_transform(x))
else:
x = linear_transform(x)
return x
Define a function to train the model, in this case the function returns a Python dictionary to store the training loss and accuracy on the validation data
# Define function to train model
def train(model, criterion, train_loader, validation_loader, optimizer, epochs = 100):
i = 0
loss_accuracy = {'training_loss': [], 'validation_accuracy': []}
#n_epochs
for epoch in range(epochs):
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
z = model(x.view(-1, 28 * 28))
loss = criterion(z, y)
loss.backward()
optimizer.step()
loss_accuracy['training_loss'].append(loss.data.item())
correct = 0
for x, y in validation_loader:
yhat = model(x.view(-1, 28 * 28))
_, label = torch.max(yhat, 1)
correct += (label == y).sum().item()
accuracy = 100 * (correct / len(validation_dataset))
loss_accuracy['validation_accuracy'].append(accuracy)
return loss_accuracy
Make some Data
Load the training dataset by setting the parameters train
to True
and convert it to a tensor by placing a transform object int the argument transform
# Create the training dataset
train_dataset = dsets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
Load the testing dataset by setting the parameters train False
and convert it to a tensor by placing a transform object int the argument transform
# Create the validation dataset
validation_dataset = dsets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
Create the training-data loader and the validation-data loader object
# Create the data loader for training and validation
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=2000, shuffle=True)
validation_loader = torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=5000, shuffle=False)
Define Neural Network, Criterion function, Optimizer and Train the Model
Create the criterion function
# Create the criterion function
criterion = nn.CrossEntropyLoss()
Create a list that contains layer size
# Create the parameters
input_dim = 28 * 28
output_dim = 10
layers = [input_dim, 100, 200, 100, output_dim]
Test PyTorch Default Initialization, Xavier Initialization and Uniform Initialization
Train the network using PyTorch Default Initialization
# Train the model with the default initialization
model = Net(layers)
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
training_results = train(model, criterion, train_loader,validation_loader, optimizer, epochs=30)
Train the network using He Initialization function
# Train the model with the He initialization
model_He = Net_He(layers)
optimizer = torch.optim.SGD(model_He.parameters(), lr=learning_rate)
training_results_He = train(model_He, criterion, train_loader, validation_loader, optimizer, epochs=30)
Train the network using Uniform Initialization function
# Train the model with the Uniform initialization
model_Uniform = Net_Uniform(layers)
optimizer = torch.optim.SGD(model_Uniform.parameters(), lr=learning_rate)
training_results_Uniform = train(model_Uniform, criterion, train_loader, validation_loader, optimizer, epochs=30)
Analyze Results
Compare the training loss for each activation
# Plot the loss
plt.plot(training_results_He['training_loss'], label='He')
plt.plot(training_results['training_loss'], label='Default')
plt.plot(training_results_Uniform['training_loss'], label='Uniform')
plt.ylabel('loss')
plt.xlabel('iteration ')
plt.title('training loss iterations')
plt.legend()
Compare the validation loss for each model
# Plot the accuracy
plt.plot(training_results_He['validation_accuracy'], label='He')
plt.plot(training_results['validation_accuracy'], label='Default')
plt.plot(training_results_Uniform['validation_accuracy'], label='Uniform')
plt.ylabel('validation accuracy')
plt.xlabel('epochs ')
plt.legend()
plt.show()