Logistic Regression and Bad Initialization Value

In this lab, you will see what happens when you use the root mean square error cost or total loss function and select a bad initialization value for the parameter values.
Author

Juma Shafara

Published

August 12, 2024

Keywords

Training Two Parameter, Mini-Batch Gradient Decent, Training Two Parameter Mini-Batch Gradient Decent

Photo by DATAIDEA

Objective

Table of Contents

In this lab, you will see what happens when you use the root mean square error cost or total loss function and select a bad initialization value for the parameter values.


Estimated Time Needed: 30 min


Preparation

We’ll need the following libraries:

# Import the libraries we need for this lab

import numpy as np
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn

Helper functions

The class plot_error_surfaces is just to help you visualize the data space and the Parameter space during training and has nothing to do with Pytorch.

# Create class for plotting and the function for plotting

class plot_error_surfaces(object):
    
    # Construstor
    def __init__(self, w_range, b_range, X, Y, n_samples = 30, go = True):
        W = np.linspace(-w_range, w_range, n_samples)
        B = np.linspace(-b_range, b_range, n_samples)
        w, b = np.meshgrid(W, B)    
        Z = np.zeros((30, 30))
        count1 = 0
        self.y = Y.numpy()
        self.x = X.numpy()
        for w1, b1 in zip(w, b):
            count2 = 0
            for w2, b2 in zip(w1, b1):
                Z[count1, count2] = np.mean((self.y - (1 / (1 + np.exp(-1*w2 * self.x - b2)))) ** 2)
                count2 += 1   
            count1 += 1
        self.Z = Z
        self.w = w
        self.b = b
        self.W = []
        self.B = []
        self.LOSS = []
        self.n = 0
        if go == True:
            plt.figure()
            plt.figure(figsize=(7.5, 5))
            plt.axes(projection='3d').plot_surface(self.w, self.b, self.Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none')
            plt.title('Loss Surface')
            plt.xlabel('w')
            plt.ylabel('b')
            plt.show()
            plt.figure()
            plt.title('Loss Surface Contour')
            plt.xlabel('w')
            plt.ylabel('b')
            plt.contour(self.w, self.b, self.Z)
            plt.show()
            
     # Setter
    def set_para_loss(self, model, loss):
        self.n = self.n + 1
        self.W.append(list(model.parameters())[0].item())
        self.B.append(list(model.parameters())[1].item())
        self.LOSS.append(loss)
    
    # Plot diagram
    def final_plot(self): 
        ax = plt.axes(projection='3d')
        ax.plot_wireframe(self.w, self.b, self.Z)
        ax.scatter(self.W, self.B, self.LOSS, c='r', marker='x', s=200, alpha=1)
        plt.figure()
        plt.contour(self.w, self.b, self.Z)
        plt.scatter(self.W, self.B, c='r', marker='x')
        plt.xlabel('w')
        plt.ylabel('b')
        plt.show()
        
    # Plot diagram
    def plot_ps(self):
        plt.subplot(121)
        plt.ylim
        plt.plot(self.x, self.y, 'ro', label="training points")
        plt.plot(self.x, self.W[-1] * self.x + self.B[-1], label="estimated line")
        plt.plot(self.x, 1 / (1 + np.exp(-1 * (self.W[-1] * self.x + self.B[-1]))), label='sigmoid')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.ylim((-0.1, 2))
        plt.title('Data Space Iteration: ' + str(self.n))
        plt.show()
        plt.subplot(122)
        plt.contour(self.w, self.b, self.Z)
        plt.scatter(self.W, self.B, c='r', marker='x')
        plt.title('Loss Surface Contour Iteration' + str(self.n))
        plt.xlabel('w')
        plt.ylabel('b')
        
# Plot the diagram

def PlotStuff(X, Y, model, epoch, leg=True):
    plt.plot(X.numpy(), model(X).detach().numpy(), label=('epoch ' + str(epoch)))
    plt.plot(X.numpy(), Y.numpy(), 'r')
    if leg == True:
        plt.legend()
    else:
        pass

Set the random seed:

# Set random seed

torch.manual_seed(0)
<torch._C.Generator at 0x7c89b4a521f0>

Get Some Data

Create the Data class

# Create the data class

class Data(Dataset):
    
    # Constructor
    def __init__(self):
        self.x = torch.arange(-1, 1, 0.1).view(-1, 1)
        self.y = torch.zeros(self.x.shape[0], 1)
        self.y[self.x[:, 0] > 0.2] = 1
        self.len = self.x.shape[0]
        
    # Getter
    def __getitem__(self, index):      
        return self.x[index], self.y[index]
    
    # Get Length
    def __len__(self):
        return self.len

Make Data object

# Create Data object

data_set = Data()

Create the Model and Total Loss Function (Cost)

Create a custom module for logistic regression:

# Create logistic_regression class

class logistic_regression(nn.Module):
    
    # Constructor
    def __init__(self, n_inputs):
        super(logistic_regression, self).__init__()
        self.linear = nn.Linear(n_inputs, 1)
        
    # Prediction
    def forward(self, x):
        yhat = torch.sigmoid(self.linear(x))
        return yhat

Create a logistic regression object or model:

# Create the logistic_regression result

model = logistic_regression(1)

Replace the random initialized variable values with some predetermined values that will not converge:

# Set the weight and bias

model.state_dict() ['linear.weight'].data[0] = torch.tensor([[-5]])
model.state_dict() ['linear.bias'].data[0] = torch.tensor([[-10]])
print("The parameters: ", model.state_dict())
The parameters:  OrderedDict({'linear.weight': tensor([[-5.]]), 'linear.bias': tensor([-10.])})

Create a plot_error_surfaces object to visualize the data space and the parameter space during training:

# Create the plot_error_surfaces object

get_surface = plot_error_surfaces(15, 13, data_set[:][0], data_set[:][1], 30)
<Figure size 640x480 with 0 Axes>

Define the dataloader, the cost or criterion function, the optimizer:

# Create dataloader object, crierion function and optimizer.

trainloader = DataLoader(dataset=data_set, batch_size=3)
criterion_rms = nn.MSELoss()
learning_rate = 2
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Train the Model via Batch Gradient Descent

Train the model

# Train the model

def train_model(epochs):
    for epoch in range(epochs):
        for x, y in trainloader: 
            yhat = model(x)
            loss = criterion_rms(yhat, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            get_surface.set_para_loss(model, loss.tolist())
        if epoch % 20 == 0:
            get_surface.plot_ps()

train_model(100)

Get the actual class of each sample and calculate the accuracy on the test data:

# Make the Prediction

yhat = model(data_set.x)
label = yhat > 0.5
print("The accuracy: ", torch.mean((label == data_set.y.type(torch.ByteTensor)).type(torch.float)))
The accuracy:  tensor(0.6500)

Accuracy is 60% compared to 100% in the last lab using a good Initialization value.

What’s on your mind? Put it in the comments!

About the Author:

Hi, My name is Juma Shafara. Am a Data Scientist and Instructor at DATAIDEA. I have taught hundreds of peope Programming, Data Analysis and Machine Learning.

I also enjoy developing innovative algorithms and models that can drive insights and value.

I regularly share some content that I find useful throughout my learning/teaching journey to simplify concepts in Machine Learning, Mathematics, Programming, and related topics on my website jumashafara.dataidea.org.

Besides these technical stuff, I enjoy watching soccer, movies and reading mystery books.

Back to top