# Import the libraries we need for this lab
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from matplotlib.colors import ListedColormap
from torch.utils.data import Dataset, DataLoader
Using Dropout for Classification
Objective for this Notebook
- Create the Model and Cost Function the PyTorch way.
- Batch Gradient Descent
Table of Contents
In this lab, you will see how adding dropout to your model will decrease overfitting.
Estimated Time Needed: 20 min
Preparation
We’ll need the following libraries
Use this function only for plotting:
# The function for plotting the diagram
def plot_decision_regions_3class(data_set, model=None):
= ListedColormap([ '#0000FF','#FF0000'])
cmap_light = ListedColormap(['#FF0000', '#00FF00', '#00AAFF'])
cmap_bold = data_set.x.numpy()
X = data_set.y.numpy()
y = .02
h = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
x_min, x_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
y_min, y_max = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
xx, yy = np.c_[xx.ravel(), yy.ravel()]
newdata
= data_set.multi_dim_poly(newdata).flatten()
Z = np.zeros(Z.shape)
f > 0] = 1
f[Z = f.reshape(xx.shape)
f if model != None:
eval()
model.= torch.Tensor(newdata)
XX = torch.max(model(XX), 1)
_, yhat = yhat.numpy().reshape(xx.shape)
yhat =cmap_light)
plt.pcolormesh(xx, yy, yhat, cmap=plt.cm.Paired)
plt.contour(xx, yy, f, cmapelse:
=plt.cm.Paired)
plt.contour(xx, yy, f, cmap=cmap_light)
plt.pcolormesh(xx, yy, f, cmap
"decision region vs True decision boundary") plt.title(
Use this function to calculate accuracy:
# The function for calculating accuracy
def accuracy(model, data_set):
= torch.max(model(data_set.x), 1)
_, yhat return (yhat == data_set.y).numpy().mean()
Make Some Data
Create a nonlinearly separable dataset:
# Create data class for creating dataset object
class Data(Dataset):
# Constructor
def __init__(self, N_SAMPLES=1000, noise_std=0.15, train=True):
= np.matrix([-1, 1, 2, 1, 1, -3, 1]).T
a self.x = np.matrix(np.random.rand(N_SAMPLES, 2))
self.f = np.array(a[0] + (self.x) * a[1:3] + np.multiply(self.x[:, 0], self.x[:, 1]) * a[4] + np.multiply(self.x, self.x) * a[5:7]).flatten()
self.a = a
self.y = np.zeros(N_SAMPLES)
self.y[self.f > 0] = 1
self.y = torch.from_numpy(self.y).type(torch.LongTensor)
self.x = torch.from_numpy(self.x).type(torch.FloatTensor)
self.x = self.x + noise_std * torch.randn(self.x.size())
self.f = torch.from_numpy(self.f)
self.a = a
if train == True:
1)
torch.manual_seed(self.x = self.x + noise_std * torch.randn(self.x.size())
0)
torch.manual_seed(
# Getter
def __getitem__(self, index):
return self.x[index], self.y[index]
# Get Length
def __len__(self):
return self.len
# Plot the diagram
def plot(self):
= data_set.x.numpy()
X = data_set.y.numpy()
y = .02
h = X[:, 0].min(), X[:, 0].max()
x_min, x_max = X[:, 1].min(), X[:, 1].max()
y_min, y_max = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
xx, yy = data_set.multi_dim_poly(np.c_[xx.ravel(), yy.ravel()]).flatten()
Z = np.zeros(Z.shape)
f > 0] = 1
f[Z = f.reshape(xx.shape)
f
'True decision boundary and sample points with noise ')
plt.title(self.x[self.y == 0, 0].numpy(), self.x[self.y == 0,1].numpy(), 'bo', label='y=0')
plt.plot(self.x[self.y == 1, 0].numpy(), self.x[self.y == 1,1].numpy(), 'ro', label='y=1')
plt.plot(=plt.cm.Paired)
plt.contour(xx, yy, f,cmap0,1)
plt.xlim(0,1)
plt.ylim(
plt.legend()
# Make a multidimension ploynomial function
def multi_dim_poly(self, x):
= np.matrix(x)
x = np.array(self.a[0] + (x) * self.a[1:3] + np.multiply(x[:, 0], x[:, 1]) * self.a[4] + np.multiply(x, x) * self.a[5:7])
out = np.array(out)
out return out
Create a dataset object:
# Create a dataset object
= Data(noise_std=0.2)
data_set data_set.plot()
Validation data:
# Get some validation data
0)
torch.manual_seed(= Data(train=False) validation_set
Create the Model, Optimizer, and Total Loss Function (Cost)
Create a custom module with three layers. in_size
is the size of the input features, n_hidden
is the size of the layers, and out_size
is the size. p
is the dropout probability. The default is 0, that is, no dropout.
# Create Net Class
class Net(nn.Module):
# Constructor
def __init__(self, in_size, n_hidden, out_size, p=0):
super(Net, self).__init__()
self.drop = nn.Dropout(p=p)
self.linear1 = nn.Linear(in_size, n_hidden)
self.linear2 = nn.Linear(n_hidden, n_hidden)
self.linear3 = nn.Linear(n_hidden, out_size)
# Prediction function
def forward(self, x):
= F.relu(self.drop(self.linear1(x)))
x = F.relu(self.drop(self.linear2(x)))
x = self.linear3(x)
x return x
Create two model objects: model
had no dropout and model_drop
has a dropout probability of 0.5:
# Create two model objects: model without dropout and model with dropout
= Net(2, 300, 2)
model = Net(2, 300, 2, p=0.5) model_drop
Train the Model via Mini-Batch Gradient Descent
Set the model using dropout to training mode; this is the default mode, but it’s good practice to write this in your code :
# Set the model to training mode
model_drop.train()
Train the model by using the Adam optimizer. See the unit on other optimizers. Use the Cross Entropy Loss:
# Set optimizer functions and criterion functions
= torch.optim.Adam(model.parameters(), lr=0.01)
optimizer_ofit = torch.optim.Adam(model_drop.parameters(), lr=0.01)
optimizer_drop = torch.nn.CrossEntropyLoss() criterion
Initialize a dictionary that stores the training and validation loss for each model:
# Initialize the LOSS dictionary to store the loss
= {}
LOSS 'training data no dropout'] = []
LOSS['validation data no dropout'] = []
LOSS['training data dropout'] = []
LOSS['validation data dropout'] = [] LOSS[
Run 500 iterations of batch gradient gradient descent:
# Train the model
= 500
epochs
def train_model(epochs):
for epoch in range(epochs):
#all the samples are used for training
= model(data_set.x)
yhat = model_drop(data_set.x)
yhat_drop = criterion(yhat, data_set.y)
loss = criterion(yhat_drop, data_set.y)
loss_drop
#store the loss for both the training and validation data for both models
'training data no dropout'].append(loss.item())
LOSS['validation data no dropout'].append(criterion(model(validation_set.x), validation_set.y).item())
LOSS['training data dropout'].append(loss_drop.item())
LOSS[eval()
model_drop.'validation data dropout'].append(criterion(model_drop(validation_set.x), validation_set.y).item())
LOSS[
model_drop.train()
optimizer_ofit.zero_grad()
optimizer_drop.zero_grad()
loss.backward()
loss_drop.backward()
optimizer_ofit.step()
optimizer_drop.step()
train_model(epochs)
Set the model with dropout to evaluation mode:
# Set the model to evaluation model
eval() model_drop.
Test the model without dropout on the validation data:
# Print out the accuracy of the model without dropout
print("The accuracy of the model without dropout: ", accuracy(model, validation_set))
Test the model with dropout on the validation data:
# Print out the accuracy of the model with dropout
print("The accuracy of the model with dropout: ", accuracy(model_drop, validation_set))
You see that the model with dropout performs better on the validation data.
True Function
Plot the decision boundary and the prediction of the networks in different colors.
# Plot the decision boundary and the prediction
plot_decision_regions_3class(data_set)
Model without Dropout:
# The model without dropout
plot_decision_regions_3class(data_set, model)
Model with Dropout:
# The model with dropout
plot_decision_regions_3class(data_set, model_drop)
You can see that the model using dropout does better at tracking the function that generated the data.
Plot out the loss for the training and validation data on both models, we use the log to make the difference more apparent
# Plot the LOSS
=(6.1, 10))
plt.figure(figsizedef plot_LOSS():
for key, value in LOSS.items():
=key)
plt.plot(np.log(np.array(value)), label
plt.legend()"iterations")
plt.xlabel("Log of cost or total loss")
plt.ylabel(
plot_LOSS()
You see that the model without dropout performs better on the training data, but it performs worse on the validation data. This suggests overfitting. However, the model using dropout performed better on the validation data, but worse on the training data.