Convolutional Neural Network with Small Images

In this lab, we will use a Convolutional Neral Networks to classify horizontal an vertical Lines
Author

Juma Shafara

Published

August 12, 2024

Keywords

Training Two Parameter, Mini-Batch Gradient Decent, Training Two Parameter Mini-Batch Gradient Decent

Photo by DATAIDEA

Objective for this Notebook

  1. Learn how to use a Convolutional Neural Network to classify handwritten digits from the MNIST database
  1. Learn hot to reshape the images to make them faster to process

Table of Contents

In this lab, we will use a Convolutional Neural Network to classify handwritten digits from the MNIST database. We will reshape the images to make them faster to process

Estimated Time Needed: 25 min 14 min to train model


Preparation

# Import the libraries we need to use in this lab

# Using the following line code to install the torchvision library
# !mamba install -y torchvision

!pip install torchvision==0.9.1 torch==1.8.1 
import torch 
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import matplotlib.pylab as plt
import numpy as np
ERROR: Ignored the following yanked versions: 0.1.6, 0.1.7, 0.1.8, 0.1.9, 0.2.0, 0.2.1, 0.2.2, 0.2.2.post2, 0.2.2.post3
ERROR: Could not find a version that satisfies the requirement torchvision==0.9.1 (from versions: 0.17.0, 0.17.1, 0.17.2, 0.18.0, 0.18.1, 0.19.0)
ERROR: No matching distribution found for torchvision==0.9.1

Define the function plot_channels to plot out the kernel parameters of each channel

# Define the function for plotting the channels

def plot_channels(W):
    n_out = W.shape[0]
    n_in = W.shape[1]
    w_min = W.min().item()
    w_max = W.max().item()
    fig, axes = plt.subplots(n_out, n_in)
    fig.subplots_adjust(hspace=0.1)
    out_index = 0
    in_index = 0
    
    #plot outputs as rows inputs as columns 
    for ax in axes.flat:
        if in_index > n_in-1:
            out_index = out_index + 1
            in_index = 0
        ax.imshow(W[out_index, in_index, :, :], vmin=w_min, vmax=w_max, cmap='seismic')
        ax.set_yticklabels([])
        ax.set_xticklabels([])
        in_index = in_index + 1

    plt.show()

Define the function plot_parameters to plot out the kernel parameters of each channel with Multiple outputs .

# Define the function for plotting the parameters

def plot_parameters(W, number_rows=1, name="", i=0):
    W = W.data[:, i, :, :]
    n_filters = W.shape[0]
    w_min = W.min().item()
    w_max = W.max().item()
    fig, axes = plt.subplots(number_rows, n_filters // number_rows)
    fig.subplots_adjust(hspace=0.4)

    for i, ax in enumerate(axes.flat):
        if i < n_filters:
            # Set the label for the sub-plot.
            ax.set_xlabel("kernel:{0}".format(i + 1))

            # Plot the image.
            ax.imshow(W[i, :], vmin=w_min, vmax=w_max, cmap='seismic')
            ax.set_xticks([])
            ax.set_yticks([])
    plt.suptitle(name, fontsize=10)    
    plt.show()

Define the function plot_activation to plot out the activations of the Convolutional layers

# Define the function for plotting the activations

def plot_activations(A, number_rows=1, name="", i=0):
    A = A[0, :, :, :].detach().numpy()
    n_activations = A.shape[0]
    A_min = A.min().item()
    A_max = A.max().item()
    fig, axes = plt.subplots(number_rows, n_activations // number_rows)
    fig.subplots_adjust(hspace = 0.4)

    for i, ax in enumerate(axes.flat):
        if i < n_activations:
            # Set the label for the sub-plot.
            ax.set_xlabel("activation:{0}".format(i + 1))

            # Plot the image.
            ax.imshow(A[i, :], vmin=A_min, vmax=A_max, cmap='seismic')
            ax.set_xticks([])
            ax.set_yticks([])
    plt.show()

Define the function show_data to plot out data samples as images.

def show_data(data_sample):
    plt.imshow(data_sample[0].numpy().reshape(IMAGE_SIZE, IMAGE_SIZE), cmap='gray')
    plt.title('y = '+ str(data_sample[1]))

Get the Data

we create a transform to resize the image and convert it to a tensor .

IMAGE_SIZE = 16

composed = transforms.Compose([transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)), transforms.ToTensor()])

Load the training dataset by setting the parameters train to True. We use the transform defined above.

train_dataset = dsets.MNIST(root='./data', train=True, download=True, transform=composed)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz
100.0%
Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz
100.0%
Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz
100.0%
Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz
100.0%
Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw

Load the testing dataset by setting the parameters train False.

# Make the validating 

validation_dataset = dsets.MNIST(root='./data', train=False, download=True, transform=composed)

We can see the data type is long.

# Show the data type for each element in dataset

type(train_dataset[0][1])
int

Each element in the rectangular tensor corresponds to a number representing a pixel intensity as demonstrated by the following image.

MNIST data image

Print out the fourth label

# The label for the fourth data element

train_dataset[3][1]
1

Plot the fourth sample

# The image for the fourth data element
show_data(train_dataset[3])

The fourth sample is a “1”.

Build a Convolutional Neural Network Class

Build a Convolutional Network class with two Convolutional layers and one fully connected layer. Pre-determine the size of the final output matrix. The parameters in the constructor are the number of output channels for the first and second layer.

class CNN(nn.Module):
    
    # Contructor
    def __init__(self, out_1=16, out_2=32):
        super(CNN, self).__init__()
        self.cnn1 = nn.Conv2d(in_channels=1, out_channels=out_1, kernel_size=5, padding=2)
        self.maxpool1=nn.MaxPool2d(kernel_size=2)

        self.cnn2 = nn.Conv2d(in_channels=out_1, out_channels=out_2, kernel_size=5, stride=1, padding=2)
        self.maxpool2=nn.MaxPool2d(kernel_size=2)
        self.fc1 = nn.Linear(out_2 * 4 * 4, 10)
    
    # Prediction
    def forward(self, x):
        x = self.cnn1(x)
        x = torch.relu(x)
        x = self.maxpool1(x)
        x = self.cnn2(x)
        x = torch.relu(x)
        x = self.maxpool2(x)
        x = x.view(x.size(0), -1)
        x = self.fc1(x)
        return x
    
    # Outputs in each steps
    def activations(self, x):
        #outputs activation this is not necessary
        z1 = self.cnn1(x)
        a1 = torch.relu(z1)
        out = self.maxpool1(a1)
        
        z2 = self.cnn2(out)
        a2 = torch.relu(z2)
        out1 = self.maxpool2(a2)
        out = out.view(out.size(0),-1)
        return z1, a1, z2, a2, out1,out

Define the Convolutional Neural Network Classifier, Criterion function, Optimizer and Train the Model

There are 16 output channels for the first layer, and 32 output channels for the second layer

# Create the model object using CNN class

model = CNN(out_1=16, out_2=32)

Plot the model parameters for the kernels before training the kernels. The kernels are initialized randomly.

# Plot the parameters

plot_parameters(model.state_dict()['cnn1.weight'], number_rows=4, name="1st layer kernels before training ")
plot_parameters(model.state_dict()['cnn2.weight'], number_rows=4, name='2nd layer kernels before training' )

Define the loss function, the optimizer and the dataset loader

criterion = nn.CrossEntropyLoss()
learning_rate = 0.1
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100)
validation_loader = torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=5000)

Train the model and determine validation accuracy technically test accuracy (This may take a long time)

# Train the model

n_epochs=3
cost_list=[]
accuracy_list=[]
N_test=len(validation_dataset)
COST=0

def train_model(n_epochs):
    for epoch in range(n_epochs):
        COST=0
        for x, y in train_loader:
            optimizer.zero_grad()
            z = model(x)
            loss = criterion(z, y)
            loss.backward()
            optimizer.step()
            COST+=loss.data
        
        cost_list.append(COST)
        correct=0
        #perform a prediction on the validation  data  
        for x_test, y_test in validation_loader:
            z = model(x_test)
            _, yhat = torch.max(z.data, 1)
            correct += (yhat == y_test).sum().item()
        accuracy = correct / N_test
        accuracy_list.append(accuracy)
     
train_model(n_epochs)

Analyze Results

Plot the loss and accuracy on the validation data:

# Plot the loss and accuracy

fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.plot(cost_list, color=color)
ax1.set_xlabel('epoch', color=color)
ax1.set_ylabel('Cost', color=color)
ax1.tick_params(axis='y', color=color)
    
ax2 = ax1.twinx()  
color = 'tab:blue'
ax2.set_ylabel('accuracy', color=color) 
ax2.set_xlabel('epoch', color=color)
ax2.plot( accuracy_list, color=color)
ax2.tick_params(axis='y', color=color)
fig.tight_layout()

View the results of the parameters for the Convolutional layers

# Plot the channels

plot_channels(model.state_dict()['cnn1.weight'])
plot_channels(model.state_dict()['cnn2.weight'])

Consider the following sample

# Show the second image

show_data(train_dataset[1])

Determine the activations

# Use the CNN activations class to see the steps

out = model.activations(train_dataset[1][0].view(1, 1, IMAGE_SIZE, IMAGE_SIZE))

Plot out the first set of activations

# Plot the outputs after the first CNN

plot_activations(out[0], number_rows=4, name="Output after the 1st CNN")

The image below is the result after applying the relu activation function

# Plot the outputs after the first Relu

plot_activations(out[1], number_rows=4, name="Output after the 1st Relu")

The image below is the result of the activation map after the second output layer.

# Plot the outputs after the second CNN

plot_activations(out[2], number_rows=32 // 4, name="Output after the 2nd CNN")

The image below is the result of the activation map after applying the second relu

# Plot the outputs after the second Relu

plot_activations(out[3], number_rows=4, name="Output after the 2nd Relu")

We can see the result for the third sample

# Show the third image

show_data(train_dataset[2])

# Use the CNN activations class to see the steps

out = model.activations(train_dataset[2][0].view(1, 1, IMAGE_SIZE, IMAGE_SIZE))
# Plot the outputs after the first CNN

plot_activations(out[0], number_rows=4, name="Output after the 1st CNN")

# Plot the outputs after the first Relu

plot_activations(out[1], number_rows=4, name="Output after the 1st Relu")

# Plot the outputs after the second CNN

plot_activations(out[2], number_rows=32 // 4, name="Output after the 2nd CNN")

# Plot the outputs after the second Relu

plot_activations(out[3], number_rows=4, name="Output after the 2nd Relu")

Plot the first five mis-classified samples:

# Plot the mis-classified samples

count = 0
for x, y in torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=1):
    z = model(x)
    _, yhat = torch.max(z, 1)
    if yhat != y:
        show_data((x, y))
        plt.show()
        print("yhat: ",yhat)
        count += 1
    if count >= 5:
        break

yhat:  tensor([3])

yhat:  tensor([5])

yhat:  tensor([2])

yhat:  tensor([0])

yhat:  tensor([4])

What’s on your mind? Put it in the comments!

Back to top