Simple One Hidden Layer Neural Network

In this lab, you will use a single-layer neural network to classify non linearly seprable data in 1-Ddatabase.
Author

Juma Shafara

Published

August 9, 2024

Keywords

Training Two Parameter, Mini-Batch Gradient Decent, Training Two Parameter Mini-Batch Gradient Decent

Photo by DATAIDEA

Objective

Table of Contents

In this lab, you will use a single-layer neural network to classify non linearly seprable data in 1-Ddatabase.

Estimated Time Needed: 25 min


Preparation

We’ll need the following libraries

# Import the libraries we need for this lab

import torch 
import torch.nn as nn
from torch import sigmoid
import matplotlib.pylab as plt
import numpy as np
torch.manual_seed(0)
<torch._C.Generator at 0x7c4f98773170>

Used for plotting the model

# The function for plotting the model

def PlotStuff(X, Y, model, epoch, leg=True):
    
    plt.plot(X.numpy(), model(X).detach().numpy(), label=('epoch ' + str(epoch)))
    plt.plot(X.numpy(), Y.numpy(), 'r')
    plt.xlabel('x')
    if leg == True:
        plt.legend()
    else:
        pass

Neural Network Module and Training Function

Define the activations and the output of the first linear layer as an attribute. Note that this is not good practice.

# Define the class Net

class Net(nn.Module):
    
    # Constructor
    def __init__(self, D_in, H, D_out):
        super(Net, self).__init__()
        # hidden layer 
        self.linear1 = nn.Linear(D_in, H)
        self.linear2 = nn.Linear(H, D_out)
        # Define the first linear layer as an attribute, this is not good practice
        self.a1 = None
        self.l1 = None
        self.l2=None
    
    # Prediction
    def forward(self, x):
        self.l1 = self.linear1(x)
        self.a1 = sigmoid(self.l1)
        self.l2=self.linear2(self.a1)
        yhat = sigmoid(self.linear2(self.a1))
        return yhat

Define the training function:

# Define the training function

def train(Y, X, model, optimizer, criterion, epochs=1000):
    cost = []
    total=0
    for epoch in range(epochs):
        total=0
        for y, x in zip(Y, X):
            yhat = model(x)
            loss = criterion(yhat, y)
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
            #cumulative loss 
            total+=loss.item() 
        cost.append(total)
        if epoch % 300 == 0:    
            PlotStuff(X, Y, model, epoch, leg=True)
            plt.show()
            model(X)
            plt.scatter(model.a1.detach().numpy()[:, 0], model.a1.detach().numpy()[:, 1], c=Y.numpy().reshape(-1))
            plt.title('activations')
            plt.show()
    return cost

Make Some Data

# Make some data

X = torch.arange(-20, 20, 1).view(-1, 1).type(torch.FloatTensor)
Y = torch.zeros(X.shape[0])
Y[(X[:, 0] > -4) & (X[:, 0] < 4)] = 1.0

Define the Neural Network, Criterion Function, Optimizer and Train the Model

Create the Cross-Entropy loss function:

# The loss function

def criterion_cross(outputs, labels):
    out = -1 * torch.mean(labels * torch.log(outputs) + (1 - labels) * torch.log(1 - outputs))
    return out

Define the Neural Network, Optimizer, and Train the Model:

# Train the model
# size of input 
D_in = 1
# size of hidden layer 
H = 2
# number of outputs 
D_out = 1
# learning rate 
learning_rate = 0.1
# create the model 
model = Net(D_in, H, D_out)
#optimizer 
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
#train the model usein
cost_cross = train(Y, X, model, optimizer, criterion_cross, epochs=1000)
#plot the loss
plt.plot(cost_cross)
plt.xlabel('epoch')
plt.title('cross entropy loss')

Text(0.5, 1.0, 'cross entropy loss')

By examining the output of the activation, you see by the 600th epoch that the data has been mapped to a linearly separable space.

we can make a prediction for a arbitrary one tensors

x=torch.tensor([0.0])
yhat=model(x)
yhat

we can make a prediction for some arbitrary one tensors

X_=torch.tensor([[0.0],[2.0],[3.0]])
Yhat=model(X_)
Yhat

we can threshold the predication

Yhat=Yhat>0.5
Yhat

Practice

Repeat the previous steps above by using the MSE cost or total loss:

# Practice: Train the model with MSE Loss Function

# Type your code here

Double-click here for the solution.

What’s on your mind? Put it in the comments!

About the Author:

Hi, My name is Juma Shafara. Am a Data Scientist and Instructor at DATAIDEA. I have taught hundreds of peope Programming, Data Analysis and Machine Learning.

I also enjoy developing innovative algorithms and models that can drive insights and value.

I regularly share some content that I find useful throughout my learning/teaching journey to simplify concepts in Machine Learning, Mathematics, Programming, and related topics on my website jumashafara.dataidea.org.

Besides these technical stuff, I enjoy watching soccer, movies and reading mystery books.

Back to top